skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Verheyen, Erik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Interspecific competition, environmental filtering, or spatial variation in productivity can contribute to positive or negative spatial covariance in the abundances of species across ensembles (i.e., groups of interacting species defined by geography, resource use, and taxonomy). In contrast, density compensation should give rise to a negative relationship between ecomorphological similarity and abundance of species within ensembles. We evaluated (1) whether positive or negative covariances characterized the pairwise relationships of 21 species of Congolese shrew, and (2) whether density compensation characterized the structure of each of 36 Congolese shrew ensembles, and did so based on the abundances or biomasses of species. In general, positive covariance is more common than negative covariance based on considerations of abundance or biomass, suggesting dominant roles for environmental filtering and productivity. Nonetheless, negative covariance is more common for ecomorphologically similar species, suggesting a dominant role for competition within functional groups. Effects of abundance or biomass compensation, via pairwise or diffuse competitive interactions, were detected less often than expected by chance, suggesting that interspecific competition is not the dominant mechanism structuring these ensembles. Effects of competition may be balanced by responses to variation in resource abundance among sites in a landscape or among niche spaces within sites. Future studies of compensatory effects should incorporate considerations of heterogeneity in the abundance and distribution of resources in ecological space to better isolate the effects of competition and resource abundance, which can have opposing effects on community structure. 
    more » « less